

Database Subsetting: What You Need to Know

Creating Small Copies of Large Databases

 A Net 2000 Ltd. White Paper

Abstract

Small subset versions of large databases are often required for development, testing and

training. Such databases must be far smaller than the original and yet still form a self-

contained system composed of data that is relevant, interrelated and complete.

This paper examines the many factors associated with the creation of such referentially

correct subset databases and is, in most respects, a generic survey of the issues.

However it must be noted that Net 2000 Ltd., the authors of this paper, sell a software

data subsetting tool called DataBee (http://www.DataBee.com) and that this tool is

referenced briefly towards the end of this paper..

Some keywords which may assist you in finding this document online are:

Database Subsetting, Data Subset, Cut Down Database, Data Archiving, Small Test Databases

 Net 2000 Ltd.

 http://www.Net2000Ltd.com

 Info@Net2000Ltd.com

http://www.datamasker.com/
http://www.net2000ltd.com/
mailto:Info@Net2000Ltd.com

Database Subsetting: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2014 - ii - http://www.DataBee.com

Table of Contents

Disclaimer ... 1

Introduction ... 2

Summary of Development and Test Database Creation Options ... 3

Before You Begin: Plan Your Subset Database ... 4

Choose Your Base Data .. 5

Practical Considerations .. 6

Find a Person that Knows the Schema .. 6

Relationship Mechanics .. 6

Finding Table-to-Table the Relationships .. 7

Follow the Foreign Keys ... 7

Column Similarity ... 8

ER Diagrams ... 8

Knowledgeable Person .. 8

Population Mechanics: Actually Doing It ... 9

Subset Population Issues ... 10

The Duplicate Row Problem ... 10

The Circular Path Problem .. 10

The Self-Referential Relationship Problem .. 11

A Production Process .. 12

Subset Creation Software .. 13

DataBee ... 13

Base Data and Driver Tables .. 13

Duplicate, Circular Path, and Self-Referential Problems ... 13

A True Production Process ... 13

Database Subsetting: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2014 - 1 - http://www.DataBee.com

Disclaimer

The contents of this document are for general information purposes only and

are not intended to constitute professional advice of any description. The

provision of this information does not create a business or professional services

relationship. Net 2000 Ltd. makes no claim, representation, promise,

undertaking or warranty regarding the accuracy, timeliness, completeness,

suitability or fitness for any purpose, merchantability, up-to-datedness or any

other aspect of the information contained in this paper, all of which is provided

"as is" and "as available" without any warranty of any kind.

The information content of databases varies widely and each has a unique

configuration. Readers should take appropriate professional advice prior to

performing any actions.

Database Subsetting: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2014 - 2 - http://www.DataBee.com

Database Subsetting: What You Need to Know

Introduction

The demands of business today are such that the size and

complexity of databases is continually increasing. Coupled with

this ever increasing size is a continuing need for new

applications to process the data. Therein lies the problem. Once

a database exceeds a certain size it becomes very expensive in

terms of both money and time to provide full size copies of the

original database for the purposes of development, testing and

training. Consider the cost - just in time - to replicate, test

against, backup or recover a full sized copy of your production

system. Add to this the costs of storage and backup media.

Many organizations resolve this problem by creating far fewer

copies (often only one) of the production database than are

really needed and then ask the development and testing teams

to share its usage. Needless to say, this approach quickly

becomes an exercise in diplomacy. The trouble soon starts: the

developers collide with one another, the testers overwrite each

others data and everybody squabbles because they have to wait

for a time slot.

Databases required by training or application development

teams rarely need to be full size - in fact full size databases can

be a drawback. Often, all that is required is a smaller version of

the database that faithfully replicates the structure and content

of the larger database. Truth be known - developers, testers and

trainers don't like to work on full size copies of production

databases as it slows them down. They also hate sharing.

Development and testing teams need small copies of the

production database. Creating these small databases manually

can be complex - it is not good enough to populate a smaller

database with a sample of data taken randomly from each table.

To do so might provide a database smaller than the original by

the desired amount, but the data would be meaningless. For

example, such a database might have invoices without

customers, customers with no addresses and so on.

Manually extracting a set of data that is meaningfully

interrelated without taking too much, leaving any out or having

duplicate records is surprisingly hard to do. The reasons for this

will be discussed in detail later in this paper but a typical

experience is that unless the schema is extraordinarily simple,

It is usually impractical to
give every developer or tester
a full size copy of the
production database.

Using full size test and
development databases can

be a disadvantage.

What development and test
teams really need are
referentially correct subsets
of the production database.

Database Subsetting: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2014 - 3 - http://www.DataBee.com

manual procedures for creating referentially correct subset

databases quickly become a descent into SQL hell. Due to the

complexity of the task, manually created subsets are almost

always a compromise with some foreign key constraints left

disabled or some tables containing rows that do not have

supporting rows in other tables.

Creating referentially correct database subsets manually is not

the only option. There are software applications which can

automate the creation process. Probably the most sophisticated

example of such a tool is the DataBee software distributed by

Net2000 Ltd.

Summary of Development and Test

Database Creation Options

For most organizations the available options for creating

development and testing databases are:

 Make full size copies and suffer the resource costs or

accept the reality of potential conflicts between the

database users.

 Manually create referentially correct database subsets

and expend large amounts of DBA effort in creating

what will probably be a “best effort” compromise, using

a combination of SQL scripts.

 Use a tool.

Manually creating
referentially correct subset
databases can be a “black
hole” which consumes
unlimited DBA hours.

Automated tools can create
the subset databases.

Database Subsetting: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2014 - 4 - http://www.DataBee.com

Before You Begin: Plan Your Subset

Database

If you are going to create a subset database the first questions

you will want to ask are: “who will be using the database” and

“what information do they need to see in it”. These are

important issues, and the answers will largely define the

content and focus of the created subset.

Knowledge of what the end users will be using the subset

database for will help you define the primary table (or tables)

on which the subset will be focused. The primary table is also

known as the “pivot” or “driver” table.

Typically, a base set of data rows are retrieved for the driver

table and the remaining tables in the schema are populated with

rows which are related to the rows contained in the driver table.

These relationships, as they cascade down through the

dependent tables, are what will provide the subset database

with the desired referential correctness.

An example:

Assuming the development team was implementing

improvements to the invoicing system, the INVOICE table

might be a logical choice for a driver table. Taking 10% of the

INVOICE table could provide the base data and the

CUSTOMER, INVENTORY and INVOICE_LINE tables

would be populated with data relevant only to the rows

currently selected for the INVOICE table. Carrying the concept

onto the next stage, tables related to the CUSTOMER table (an

ADDRESS table for example) would then be populated with

rows relevant only to the customers in the subset. In this

manner, the content of the subset ADDRESS table is populated

with data which is only indirectly related to the original

INVOICE table but is still referentially meaningful within the

subset.

Another example:

The previous example assumed that the INVOICE table was to

be the driver for the subset. What if, after some discussion, it

was determined that the development team really needed a

subset database consisting of certain representative customer

types? The previous approach would probably not guarantee

that the CUSTOMER table would be populated with a desirable

diversity of data. Rather than go through the exercise of

adjusting the base data for the INVOICE table to somehow pull

a desired range of customers, it would be far better simply to

change the driver table to CUSTOMER. The CUSTOMER

table could then be populated, (by whatever criteria are desired)

Before you begin, find out who
wants the subset database and
what they want to use it for.

Changing the driver table is
often a better way of
changing the data content of
the subset schema.

Database Subsetting: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2014 - 5 - http://www.DataBee.com

and the INVOICE table would be populated with rows

containing invoices relevant to the customers. All dependent

tables for the INVOICE table would then be populated as

before. The choice of the driver table for the subset database

can dramatically change the data content of the subset database.

A highly desirable feature of any subset creation mechanism is

the ability to change the driver table without requiring a

complete re-write of the creation software.

Choose Your Base Data

Once you have decided on the choice of driver table, the next

step is to define the base data that will form the content of that

driver table in the subset database. This issue requires careful

consideration, as the end users will not be able to develop or

test for situations which are unsupported by the data content of

the subset schema.

An example:

The development team wish to develop a new invoicing system

– but the subset database, although referentially correct, only

contains examples of three industrial customers. Thus, their

screens and reports are hard to test because they have only a

minimal amount of data to work with.

Ideally a subset database creation system should be able to use

multiple criteria to populate a driver table. For example, it

should be possible to populate the driver table with a sample of

data (20% of all rows). It should also be possible to populate

via a date range and then again via specific WHERE clauses in

a SELECT statement. Of course, such multiple queries have an

extremely high probability of returning some of the same rows.

The subset database creation system should be able to filter out

such duplicates without requiring a manual removal SQL run,

or the formulation of the base table creation statement in a

complicated multi-join or SQL UNION statement.

It should be possible to
populate the driver table
using multiple criteria.

Database Subsetting: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2014 - 6 - http://www.DataBee.com

Practical Considerations

In order to create a populated subset database you will need a

full size database to act as the data source. Also required will be

a subset database with an empty but appropriately sized

schema.

Find a Person that Knows the Schema

Populating a subset database – either manually, or by building

it with an automated tool – is all about being aware of the

meaning of the data in the tables.

The next step will look at the importance of determining the

relationships between tables and discuss ways in which these

associations might be discovered. However, it must be

emphasized that when identifying table-to-table relationships

there is no substitute for working with someone who really

knows the schema well.

Sometimes that person may not be the DBA. Database

Administrators work with the schema from the viewpoint of

maintenance and support and may not always know in great

detail how the tables are related. Systems analysts, testers and

developers are often the people who approach the database

from the standpoint of table relationships.

Relationship Mechanics

Once the driver table is loaded, all new rows inserted into the

subset database must be related somehow to the data in this

“driving” table. If this is not the case, then the incoming data

will not be referentially relevant. This requirement necessarily

forms a parent-child relationship between the tables. The parent

table with rows already in the subset needs supporting rows to

be inserted in the child. Conversely the child table must obtain

rows from the full size database but select only those related to

the rows already in the parent.

In other words, in order to populate the subset database table

you will eventually have to construct a select statement (either

manually or by proxy through an automated tool) which selects

rows from the child table on the full size database and inserts

them into the subset schema. The rows selected from the full

size child table must be related to the rows already in the parent

table in the subset database and the relationship is a standard

join between one or more columns. The exact methodology of

If you do not know the
relationships between the
tables in the schema you will
probably need to work with
someone who does.

All rows inserted into the
subset database must be
related to the rows already in
place. This is what creates
the referential correctness of
the subset.

Database Subsetting: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2014 - 7 - http://www.DataBee.com

the select can be performed in any one of a number of different

ways.

An example:

Consider a simple two table system. The parent table on the

subset database is the INVOICE table which has 100 rows.

These invoices were pulled from the much larger table on the

full size system and are all identified by a unique invoice

number. The INVOICE table is the parent and it requires

supporting rows in the child INVOICE_LINE table. These

rows must be relevant to the 100 invoices already present.

Pseudo code for the SQL insert statement would look as

follows:

INSERT into SUBSET.INVOICE_LINE

(select * from FULLSIZE.INVOICE_LINE FS

where FS.INVOICE_NUMBER IN

(select INVOICE_NUMBER from

SUBSET.INVOICE));

Finding Table-to-Table the Relationships

Finding the relationships between tables can be quite difficult.

Here are some suggestions.

Follow the Foreign Keys

The foreign keys (if present) intrinsically define relationships

between tables. Each one of the foreign keys defines a

relationship which absolutely must be supported. If the rows in

the foreign key parent table are not present in the subset

database the foreign keys will not enable. The logic of foreign

keys can be reversed (for the purposes of creating a subset

database) so if there is already data in the INVOICE table the

foreign key relationship can be used to construct a population

statement for the INVOICE_LINE table – even though the

constraint really works in the opposite direction.

If you are manually creating a subset database, then it might be

possible to automate the creation of extraction SQL statements

based on the foreign keys. An automated subset creation tool

should be able to read the foreign key constraints from the

database schema and build population SQL statements (or

whatever mechanism is used) in an automatic manner.

Foreign Keys (if they exist)
are one of the easiest
methods of discovering table-
to-table relationships.

Database Subsetting: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2014 - 8 - http://www.DataBee.com

Column Similarity

Many schemas have the referential integrity implemented at the

application level rather than in the foreign keys. One useful

way to find table relationships is to find tables with the same

column names. For example, it is probably a reasonable

assumption that every table with an EMP_ID column can

reasonably be expected to be related to each other via that

column. Of course, this is not always the case – but it is an area

worth investigating. Manually such an exploration requires a

large number of selects on the schema structure views. An

automated tool should provide a point and click solution.

ER Diagrams

Many table-to-table relationships should be determinable from

an ER diagram – if it exists. Experience suggests that for many

sites this is not a very useful option because the ER diagrams, if

they exist at all, are usually not kept up-to-date.

Knowledgeable Person

One of the most useful ways of discovering table-to-table

relationships is to ask a person knowledgeable in the schema.

Unless this person has been specifically tasked with the job of

helping you build the subset schema, you will find yourself

using up goodwill at rapid rate. A useful way of maintaining

harmonious relations is to create a list of tables in the subset

that are already populated (using rules you have figured out

yourself) and a list of tables that have no rows. Then ask the

schema guru “Are any of these empty tables joinable to any of

these non-empty ones?” If you are creating the subset manually

you will have to create the table and row count lists yourself.

An automated tool should be able to generate such lists for you.

Similarity between column
names can also be a useful
technique to discover table-
to-table relationships.

ER Diagrams are a good
source of relationships.

There is really no substitute
for a knowledgeable person
when designing a subset
database.

Database Subsetting: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2014 - 9 - http://www.DataBee.com

Population Mechanics: Actually Doing It

There are two fundamental approaches to the population of

subset databases. The first method is to determine all of the

desired relationships and to run the SQL extraction code in the

required order. The second method is to develop the subset

population mechanism incrementally through a populate, see

what you get, add a rule and repopulate procedure.

The first method (all at once) is probably more useful when

manually creating subsets. When one is doing the subset

population manually the task is so complex it isn’t really

practical to pursue an iterative approach.

Iterative development of the extraction routines should be the

preferred option and is possible with automated subset creation

tools. It is also the most desirable approach since they hide

most of the complexity from you. With automated tools, such

as the DataBee software, you would add only one or two rules

per trial and perform a sample population to see the effect. The

newly populated tables can activate previously inactive table-

to-table relationships (perhaps put in place to support foreign

keys) and cause the population of numerous other tables.

An automated subset creation tool should let you browse the

relationships currently in place between tables. In addition, it

should let you see which tables are involved in the most

relationships. By far the most effective way to build a subset

database is to figure out how to populate those frequently

referenced tables using the rows from tables in the subset

database that are already populated. Once rows are placed in

such tables, the relationships they are involved in should cause

the automatic population.

You can populate all at once
or use an iterative method.

Database Subsetting: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2014 - 10 - http://www.DataBee.com

Subset Population Issues

There are a number of issues that need to be considered during

the population of a subset database. These issues should be

taken care of in an automated subset creation tool. However,

they are some of the primary sources of trouble when creating

subsets manually.

The Duplicate Row Problem

It is quite common for a child table to have two or more

parents. This means that the child will need to contain rows that

support all of the parent rows in each parent table. The problem

arises because the child table is generally loaded separately for

each parent table. Of course, many of the rows required to

support one parent table will be duplicates of the rows required

to support another.

The duplicate rows cannot remain in the child table – at the

very least they will prevent you from enabling any primary

keys. There are really only two available options to resolve this

matter. The duplicate rows can be removed manually or the

population SQL query has to be written to join against all

parent tables. Either way is slow and introduces yet another

step into what is already a complex process. An automated

subset creation tool should be aware of the rows it already has

for a table and automatically sift out duplicates (either by

discarding them as they arrive or by not requesting them in the

first place).

The Circular Path Problem

When populating subset schema tables it is usual to focus in on

only two tables at any one time – a parent table and a child

table. This simplistic viewpoint can have some unusual side

effects.

The table-to-table relationships in most schemas are very

complex. It is quite common to have circular paths of parent-

child relationships. For example: table A needs supporting rows

in table B, table B needs supporting rows in table C and table C

needs rows from table A. Circular path relationships can have

quite large number of tables in the chain. Since tables can

require supporting rows from more than one child table, it is

possible to see very complicated arrays of multiple interlinked

table-to-table relationships.

The effect of this complexity is that new rows may well appear

in tables you previously thought you had completely processed.

For example, you may well have populated table A and

Duplicate rows are a major
issue which must be coped
with when populating subset
schemas.

The circular path problem
causes new rows to appear in
tables for which you have
already processed the
dependents.

Database Subsetting: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2014 - 11 - http://www.DataBee.com

retrieved supporting rows for all of table A’s children. Later on,

some other table-to-table relationship will treat table A as a

child and add a few more rows to it.

The newly added rows in table A will not have supporting rows

in that tables children. The arrival of new rows must be noted

and the child tables must again be populated to contain

supporting rows for the incoming table A rows. Of course, it is

undesirable to completely repopulate the child table in its

entirety – the optimum solution is to only perform a fetch for

the new rows. In any case, duplicate rows are sure to arrive and

will need to be removed.

It is the Circular Path Problem that makes manually creating

subset databases so difficult. The whole procedure quickly

becomes an iterative process in which tables and their

dependent chains (and the dependents of the dependents) must

be processed until every table has the rows required to support

everything else. An iterative process as described above is

practically impossible to manage manually.

The Self-Referential Relationship Problem

Tables can have a table-to-table relationship with themselves.

This is most often seen in self-referential foreign key

constraints. Theoretically there is no real problem with self-

referential relationships – they are just another table join.

However, in practice, self-referential relationships cause a

massive number of iterations to be performed. Since the parent

and child tables are the same on each run, populating the child

also populates the parent. Then the Circular Path Problem

begins and the new parent record must then be processed for its

own children. Depending on the database design these iterative

chains can be tens of thousands of links long.

Self-referential relationships should be identified (either

manually or by the automated tool you are using) and the

normal SQL population mechanism should be replaced with a

Connect By Prior, Recursive Common Table Expression or

similar functionality. This will prevent massive amounts of

iteration as the self-referential relationship chains are followed.

The self-referential
relationship problem can
cause many thousands of
iterations if not handled
properly.

Database Subsetting: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2014 - 12 - http://www.DataBee.com

A Production Process

Once you have created a subset database for the development

and test teams you will probably find that they like it so much

they want another. Of course, if things haven’t changed all that

much in the full size version you can probably just clone the

existing subset or restore it from a backup somewhere. But

what do you do if there have been major changes in data

content on the original full size database? The point of having a

subset database is that it should be a faithful, referentially

correct small copy of the original. The only option is to create a

new copy of the subset database. This is where automated tools

really become useful. A manual procedure will take roughly the

same amount of time each time it is used. An automated tool

might require configuration in order to create the first subset

database, but subsequent runs should be a push button

operation.

Schema changes are also an issue – if the schema structure

changes in the full size database, then the subset databases

derived from it will also need to change. Ideally the creation

process should be robust enough to cope with schema changes

without major rewrites of the software. This is true for both

manual and automatic subset database creation solutions.

The creation of subset
databases should form part of
a production process.

Database Subsetting: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2014 - 13 - http://www.DataBee.com

Subset Creation Software

The previous discussion outlined the major issues involved in

the creation of a subset database. A number of references were

made to automated subset creation software. These tools are

designed to simplify the process of creating subset databases

and are intended to eliminate most problems for you. One such

software tool is DataBee.

DataBee

The DataBee software is an automated tool that creates

referentially correct subsets of large Oracle and SQL Server

databases. It was specifically designed to address the issues

discussed in this paper.

As with any subset creation software, DataBee requires

configuration before use. However, DataBee contains the tools

to discover table-to-table relationships and readily lends itself

to a step-by-step development approach.

Base Data and Driver Tables

The DataBee software tool supports multiple driver tables and

these tables can be populated with an unlimited number of SQL

queries. Duplicates are automatically removed.

Duplicate, Circular Path, and Self-Referential Problems

DataBee handles the Duplicate Row, Circular Path and Self-

Referential problems automatically. You, as the user, never

have to remove duplicates – it is all done automatically. In

addition, if new rows are added to tables already processed

DataBee will automatically and efficiently handle the fetch of

the rows for dependent tables. DataBee ensures each and every

foreign key will enable in the subset database and that all

logical data relationships are valid.

A True Production Process

DataBee provides a true production process. Once the initial

configuration has been performed, the creation of subset

databases is a push button operation. With DataBee, it is simple

and easy to create as many high quality subset databases as is

required. More information and free evaluation downloads of

the DataBee software can be found on the DataBee Web site at:

http://www.DataBee.com

The DataBee software creates
subset databases.

DataBee contains a suite of
useful tools for discovering
table-to-table relationships.

DataBee supports multiple
driver tables and a variety of
base table population
measures.

The many troublesome issues
surrounding duplicate rows
and relationship complexity
are handled automatically by
DataBee.

DataBee forms a true
production process and
creating subset databases is
a simple push button
operation.

http://www.databee.com/

